Development of Membrane Bioreactor to Membrane Electro-bioreactor for Advanced Treatment of Wastewater

Authors

  • A. Yeganeh School of Environment, College of Engineering, University of Tehran, P.O.Box 14155-6135, Tehran, Iran
  • GH. Nabi-Bidhendi School of Environment, College of Engineering, University of Tehran, P.O.Box 14155-6135, Tehran, Iran
  • H. Rashedi School of Chemical Engineering, College of Engineering, University of Tehran, P.O.Box 14155-6135, Tehran, Iran
  • M. Hosseinzadeh School of Civil Engineering, Iran University of Science and Technology, P.O.Box 16846-13114, Tehran, Iran
Abstract:

Limited available water resources have rendered wastewater reuse an important issue to specialists in most developed countries, today. The current study works on membrane filtration for treatment of industrial wastewater. By comparing the two methods of membrane bioreactor (MBR) and hybrid membrane electro bioreactor (MEBR) processes, it finds that earlier fouling in the membrane occurs in the first method than the second one. In the membrane electro-bioreactor, in addition to membrane filtration and activated sludge process, the chemical process of electrical coagulation is performed concurrently, wherein the final product quality is improved and the fouling, reduced. In comparison to membrane bioreactor, this method is capable of removing higher percentage of chemical oxygen demand (COD) as an index of organic matters. Accordingly, it is recommended to use the membrane electro-bioreactor method as an alternative to membrane bioreactor for advanced wastewater treatment.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Efficient treatment of baker’s yeast wastewater using aerobic membrane bioreactor

A membrane bioreactor (MBR) system based on a dead-end immersed hollow fiber membrane and filamentous fungus Aspergillus oryzae were used for treatment of baker’s yeast wastewater. The fungus was adapted to the wastewater in the bioreactor for two weeks before starting the continuous process. Average organic loading rate of 4.2 kg COD/m3.d was entered the bioreactor. MBR system was able to redu...

full text

Hollow Fiber Membrane Bioreactor for COD Biodegradation of Tapioca Wastewater

The present work studied the application of membrane bioreactor (MBR) for tapioca wastewater processing that contained chemical oxygen demand (COD) ranging from 4000-9000 mg/L. A preliminary study was initially conducted in order to evaluate membrane performance with respect to its flux with MLSS concentration ranging from 4,500 to 10,500 mg/L. It was clear that fouling was observed during the ...

full text

Municipal Wastewater Treatment Using a Hollow Fiber Membrane Bioreactor

A bioreactor equipped with hollow fiber microfiltration membranes was applied for wastewater treatment. Removal of chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) was investigated. The experimental setup consisted of influent and effluent tanks, and membrane modules using Polyvinyl Di–Fluoride (PVDF) hollow fibers. The operation program included suction and backwash...

full text

Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology

The development and application of a membrane bioreactor (MBR) for fullscale municipal wastewater treatment is the most important recent technological advance in terms of biological wastewater treatment. The MBR is a suspended growth-activated sludge system that utilizes microporous membranes for solid/liquid separation instead of secondary clarifiers. It represents a decisive step forward conc...

full text

Study on Operational Conditions to Minimize Membrane Fouling in Membrane Bioreactor (MBR) System for Wastewater Treatment-Preliminary Pilot Tests

In this study, effect of antiscalant usage on minimizing of membrane fouling due to high water hardness during wastewater treatment tests run by a pilot-scale membrane bioreactor (MBR) system. The membranes used in these studies were Kubota flat sheet MBR membranes made from polyethylene with a pore size of 0.4 micrometer. Preliminary tests were carried out with tap water...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  197- 210

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023